Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia
نویسندگان
چکیده
The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well-instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar–lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (because of limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar–Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2-km height because of instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of-atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar–lidar instruments and radiative transfer calculations are also found above 10 km (up to 0.35Kday for the shortwave and 0.8Kday for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud–radiation interactions in large-scale models, and limitations of each set of instrumentation should be considered when interpreting model–observation differences.
منابع مشابه
Investigation of the Effect of Recombination on Superluminescent Light-Emitting Diode Output Power Based on Nitride Pyramid Quantum Dots
In this article, the temperature behavior of output power of superluminescent light-emitting diode (SLED) by considering the effect of non-radiative recombination coefficient, non-radiative spontaneous emission coefficient and Auger recombination coefficients has been investigated. For this aim, GaN pyramidal quantum dots were used as the active region. The numerical method has been used to sol...
متن کاملLet’s Take it to the Clouds: The Potential of Educational Innovations, Including Blended Learning, for Capacity Building in Developing Countries
In modern decentralised health systems, district and local managers are increasingly responsible for financing, managing, and delivering healthcare. However, their lack of adequate skills and competencies are a critical barrier to improved performance of health systems. Given the financial and human resource, constraints of relying on traditional face-to-face training to upskill a large and dis...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملThe variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Australia
The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of thi...
متن کاملEffect of the frequency content of earthquake excitation on damage detection in steel frames
In this study, the effect of earthquake frequency content and noise effects on damage detection has been investigated. For this purpose, the damage was defined as nonlinear behavior of beams and columns, and several ground motion records were scaled so that some elements yield under the applied excitation. Then the acceleration response data of each floor obtained using the nonlinear dynamic an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014